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Abstract
Two methods are considered for assessing the asymptotic stability of the trivial
solution of linear stochastic differential equations driven by Poisson white
noise, interpreted as the formal derivative of a compound Poisson process. The
first method attempts to extend a result for diffusion processes satisfying linear
stochastic differential equations to the case of linear equations with Poisson
white noise. The developments for the method are based on Itô’s formula for
semimartingales and Lyapunov exponents. The second method is based on
a geometric ergodic theorem for Markov chains providing a criterion for the
asymptotic stability of the solution of linear stochastic differential equations
with Poisson white noise. Two examples are presented to illustrate the use
and evaluate the potential of the two methods. The examples demonstrate
limitations of the first method and the generality of the second method.

PACS numbers: 02.50.Ey, 05.10.Gg

1. Introduction

Formation of dynamic patterns in fluids, transition from uncorrelated to coherent oscillations
in lasers, crystal growth, flatter of airplane wings, population dynamics and other phenomena
in physics, engineering and biology can be described by evolution equations with noise
[4, 5]. Generally, these evolution equations are nonlinear and stochastic with continuous
or discrete time. The continuous and discrete time evolution equations, referred to as
stochastic differential equations and discrete noise maps, are driven by Gaussian white noise
processes, defined as the formal derivative of Brownian motions, and sequences of independent
identically distributed random variables, respectively ([4], chapters 4 and 11).

We consider stochastic differential equations driven by Poisson white noise, defined by
the formal derivative of a compound Poisson process. The Poisson white noise can be viewed
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as a sequence of independent identically distributed random pulses arriving at random times
given by the jump times of a Poisson process. There are at least three reasons for studying
evolution equations with Poisson white noise. First, the contribution of microscopic processes
to evolution equations established at a mezoscopic level can be captured by adding noise
sources ([4], chapter 10). Poisson white noise is a natural model for some noise sources,
for example, sources corresponding to impacts between microscopic particles. Second, the
Gaussian white noise can be viewed as the limit of a sequence of Poisson white noise processes
with pulses of increasing frequency and decreasing magnitude. Third, methods developed for
the analysis of Markov chains can be used to study the long term behaviour of the solution of
stochastic differential equations with Poisson white noise since these equations can be recast
as discrete noise maps, as demonstrated in the paper.

Let X̃ be an R
d -valued stochastic process defined by the evolution equation

˙̃X(t) = g(X̃(t), α + W (t)), t � 0, X̃(0) = x0 ∈ R
d , (1)

where α ∈ R
d ′

is a parameter, W ∈ R
d ′

denotes a white noise process and d, d ′ � 1
are integers. Suppose that equation (1) has a stationary solution X̃s . A main objective of
stochastic stability studies is the determination of subsets in R

d ′
consisting of values of α

for which solutions X̃ of equation (1) starting in a small vicinity of a stationary solution X̃s

converge to X̃s as time increases indefinitely. If this behaviour is observed for almost all
samples of X̃ , then X̃s is said to be stable a.s.

We determine whether a stationary solution X̃s of equation (1) is or is not a.s. stable by
studying the evolution in time of the difference X = X̃ − X̃s , where X̃ is a solution of
equation (1) representing a perturbation about X̃s . The stationary solution X̃s is a.s. stable
if the trivial stationary solution of the defining equation for X is stable almost surely. Since
‖X(t)‖ is small at least initially, X satisfies approximately a differential equation obtained
from equation (1) by linearization about X̃s , that is, X is the solution of a linear stochastic
differential equation.

If W in equation (1) is a Gaussian white noise, then X is an R
d -valued diffusion

process satisfying a stochastic differential equation whose drift and diffusion coefficients
are linear functions of the state X . The Gaussian white noise is viewed as the formal
derivative of a Brownian motion process. Conditions have been established in [6] under
which the diffusion process X is such that ‖X(t)‖ converges a.s. to 0 as t → ∞, that is,
P(limt→∞ ‖X(t)‖= 0) = 1, irrespective of the initial state X(0) = x ∈ R

d . If the above
limit holds, it is said that the trivial solution of the defining stochastic differential equation
for X is asymptotically stable almost surely. It was also shown in [6] that the top Lyapunov
exponent can be used to assess whether the trivial solution is or is not stable.

As previously stated, we assume that W in equation (1) is a Poisson rather than Gaussian
white noise, so that X is the solution of a linear stochastic differential equation driven by
Poisson white noise. Two methods are considered for assessing the asymptotic stability of the
trivial solution for this type of equations. The first method is an attempt of extending a result
in [6], and uses Lyapunov exponents to forecast the long term behaviour of X . Derivations
are based on Itô’s formula for semimartingales. The second method uses a geometric ergodic
theorem for Markov chains to assess the long term behaviour of a Markov chain Xn associated
with X , and involves two steps. First, it is established whether the Markov chain Xn is or
is not ergodic. Second, if Xn is ergodic, its long term behaviour can be inferred from the
defining recurrence relationship for the Markov chain Xn or approximations of the invariant
measure of this chain. The examples in the paper (1) demonstrate difficulties related to the
extension of the method in [6] to the case of stochastic differential equations with Poisson
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white noise and (2) show that the second method provides a general criterion for assessing the
long term behaviour of Xn and X .

2. Problem definition

Let X be an R
d -valued process defined on a probability space (�,F, P ) by the stochastic

differential equation

dX(t) = aX(t−) dt +

(
d∑

k=1

b(k)Xk(t−)

)
dC(t), t � 0, (2)

where a and b(k), k = 1, . . . , d, are (d, d) and (d, d ′) matrices with constant entries. The
input C is an R

d ′
-valued stochastic process with independent coordinates

Cr(t) =
Nr(t)∑
q=1

Yr,q, r = 1, . . . , d ′, (3)

where Nr are Poisson processes with intensities λr, r = 1, . . . , d ′, that are independent of
each other, Yr,q, q = 1, 2, . . . , denote independent copies of Yr,1 and Yr,1, r = 1, . . . , d ′,
are mutually independent real-valued random variables, which do not depend on the Poisson
processes Nr .

Since the coefficients in equation (2) are linear functions of X , this equation has a unique
solution, which is a semimartingale ([8], theorem 6, p 194 and theorem 7, p 197). Our
objective is to find conditions under which X converges almost surely to the origin of R

d

as time increases indefinitely, that is, assess the stochastic stability for the trivial solution
for equation (2). As previously stated, two methods are considered. The first is based on
Lyapunov exponents, and the second uses concepts of stochastic stability for Markov chains.

As previously stated the Poisson white noise can be interpreted as the formal derivative
of compound Poisson processes of the type in equation (3). The Poisson white noise consists
of pulses of amplitude Yr,q arriving at the jump times of Nr , so that the average time between
its consecutive pulses is 1/λr . The Poisson white noise provides a realistic model for impacts
between microscopic particles, such as atoms and molecules, and its limit for jumps of
decreasing amplitude and increasing arrival rate approaches the Gaussian white noise.

3. Associated Markov chain

Let X be the process in equation (2) and consider a Poisson process N with intensity
λ = ∑d ′

r=1 λr . Set T0 = 0 and denote by 0 < T1 < T2 < · · · the jump times of N. The
compound Poisson process C in equation (2) can be given in the form

C(t) =
N(t)∑
k=1

V k, (4)

where V k are independent copies of an R
d ′

-valued random variable with coordinates Vk,r =
an independent copy of Yr,1 and Vk,p = 0, p �= r , with probability λr/λ, r = 1, . . . , d ′.

Consider the sequence Xn = X(Tn), n = 0, 1, . . . , consisting of the values of X
immediately following the jumps of N. The process X satisfies the deterministic differential
equation dX(t) = aX(t) dt in the time interval [Tn−1, Tn) so that X(Tn−) and Xn−1 are
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related by X(Tn−) = exp(aZn)Xn−1, where Zn = Tn −Tn−1 and exp(aZn) denotes a matrix
exponential ([1], section 1.5). The relationship between X(Tn−) and Xn is (equation (2))

Xn = X(Tn−) +

(
d∑

k=1

b(k)Xk(Tn−)

)
Y n, (5)

so that

Xn = eaZnXn−1 +

(
d∑

k=1

b(k)(eaZnXn−1)k

)
Y n, n � 1. (6)

The above formula shows that the sequence Xn, n = 0, 1, . . . , is a Markov chain. Since the
coefficients a and b in equation (2) do not depend explicitly on time, the one-step transition
function P(ξ, A) = P(Xn ∈ A | Xn−1 = ξ), A ∈ B(Rd), ξ ∈ R

d , of the Markov chain Xn

does not depend on n, where B(Rd) denotes the Borel σ -field on R
d . The m-step transition

functions of Xn can be calculated for any integer m � 1 from the recurrence formula

P (m+1)(ξ, A) =
∫

R
d

P (m)(η, A)P (ξ, dη), m � 1, (7)

with P (1)(·, ·) = P(·, ·). We also note that, for a fixed ξ ∈ R
d and integer m � 1, P (m)(ξ, ·)

is a probability measure on B(Rd).

4. An ergodic theorem for Markov chains

We state without proof a geometric ergodic theorem providing sufficient conditions for a
Markov chain to be ergodic ([7], theorem 15.0.1). The statement of the theorem involves
some less familiar concepts, which are discussed prior to its statement.

A Markov chain Xn, n = 0, 1, . . . , is said to be ψ-irreducible if ψ is a measure on
the Borel σ -field B(Rd) such that whenever ψ(A) > 0, A ∈ B(Rd), the probability that the
chain ever enters A is strictly positive for all starting points X0 = ξ ∈ R

d . A Borel set C
in R

d is said to be small if there exists an integer m > 0 and a non-trivial measure νm on
B(Rd), referred to as minorizing measure, such that P (m)(ξ, A) � νm(A) for all ξ ∈ C and
Borel sets A in R

d , where P (m) is given by equation (7). A related, and somewhat weaker
notion, is that of a petite set ([7], section 5.5.2). Let Xn, n = 0, 1, . . . , be a irreducible
Markov chain and let C be a νm-small set in R

d which can be taken to satisfy νm(C) > 0.
Hence, P (m)(ξ, ·) � νm(·), ξ ∈ C, so that the chain returns to C in m transitions with positive
probability. Let TC denote the time points for which C is a small set with minorizing measure
proportional to νm. The greatest common denominator of TC is the period for the set C. A
Markov chain is aperiodic if the greatest common denominator of TC is 1. This property does
not depend on the choice of a set C as above.

And now we state the part of the geometric ergodic theorem for Markov chains in [7],
that is relevant to our discussion. Suppose that the Markov chain defined by equation (6) is
ψ-irreducible and aperiodic. If there exists a small set C in the state space R

d of Xn, constants
b < ∞, β > 0 and a function v : R

d → [0,∞] such that v(ξ) � 1 for all ξ ∈ R
d and finite

at some point of the state space satisfying the condition

�v(ξ) � −βv(ξ) + b1C(ξ), ξ ∈ R
d , (8)

then the set Sv = {ξ ∈ R
d : v(ξ) < ∞} is absorbing, that is, a Markov chain starting in

Sv cannot exit this set, and full, that is, Sv supports the entire irreducible measure ψ , where
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�v(ξ) = E[v(X1) | X0 = ξ] − v(ξ). Moreover, there exist some constants r > 1 and
0 < ζ < ∞ such that for any ξ ∈ Sv we have

∞∑
m=1

rm ‖P (m)(ξ, ·) − π(·)‖� ζv(ξ), (9)

where π is a probability measure on B(Rd), the invariant (stationary) probability measure for
the Markov chain and

‖P (m)(ξ, ·) − π(·)‖= sup
A∈B(Rd )

|P (m)(ξ, A) − π(A)|. (10)

If equation (9) holds, the Markov chain Xn, n = 0, 1, . . . , starting with its stationary
probability π , is ergodic, and rm ‖P (m)(ξ, ·) − π(·)‖ → 0 as m → ∞, so that the stationary
probability π(A) can be approximated by the m-step transition probability P (m)(ξ, A) for all
A ∈ B(Rd) and a sufficiently large m, irrespective of ξ ∈ Sv . Also, the convergence of P (m)

to π takes place at a uniform geometric rate, that is independent of ξ ∈ Sv .

Ergodicity criterion for Xn. The ergodic theorem in equations (8)–(10) provides a general
criterion for assessing the long term behaviour of Markov chains, which can be stated as
follows. If we can find a function v : R

d → [0,∞] satisfying the condition in equation (8),
then Xn is an ergodic Markov chain whose invariant measure π can be approximated by its
m-step transition probability P (m) for a sufficiently large m (equations (9) and (10)). The
examples in the latter part of the paper are used to demonstrate the use of this criterion.

Suppose that we have applied the above criterion and showed that a Markov chain Xn

is ergodic. We show now that X in equation (2) is also ergodic, so that it is sufficient to
prove that Xn is an ergodic Markov chain. First, we note that the R

d+1-valued sequence
V n = (Xn, Zn+1) is a Markov chain, and it is straightforward to check that its transition
probabilities converge to the appropriate stationary probability and, hence, that Markov chain
is ergodic as well. Second, let f : R

d → R be a measurable bounded function and define the
real-valued sequence

Un =
∫ Tn+1

Tn

f (X(t)) dt =
∫ Zn+1

0
f (eazXn) dz n = 1, 2, . . . , (11)

where we are using a stationary, hence ergodic, version of {V n}. The latter expression of Un

is valid since there is no input in the time intervals between the jumps of C. The sequence
{Un} is ergodic since it is a function of the ergodic sequence {V n}. Hence, we have

P

(
1

m

m∑
n=0

Un −→
m→∞ E[f (X(t))]

)
= 1, (12)

([2], theorem 2, p 130), that is, time and ensemble averages coincide. By the usual arguments
this implies ergodicity of the process X .

5. Methods for stability analysis

Two methods are considered for evaluating the long term behaviour of the solution of
equation (2). The first method is based on Lyapunov exponents, and constitutes an attempt
of extending a result in [6] for assessing the stability of the solution of stochastic differential
equations with Gaussian white noise ([3], section 8.7) to the case of differential equations
with Poisson white noise. The second method is based on the theory of stochastic stability for
Markov chains (equations (8) to (10)).
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5.1. Lyapunov exponent

The Itô formula for semimartingales applied to ln(‖ X(t) ‖2) gives ([3], sections 7.1
and 7.3.2)

ln(‖X(t)‖2) − ln(‖X(0)‖2) = 2
d∑

i,j=1

aij

∫ t

0
Si(u)Sj (u) du

+
∑

0<u�t

ln

(
1 + 2

d ′∑
r=1

Ar(u−)�Cr(u) +
d ′∑

r=1

Brr(u−)(�Cr(u))2

)
, (13)

where S(t) = X(t)/‖X(t)‖, Ar are the coordinates of the R
d -valued process A(t) =∑d

k=1 S(t)T Sk(t)b
(k) and B(t) = ∑d

k,l=1(b
(k))T b(l)Sk(t)Sl(t) is a (d ′, d ′) matrix with entries

Brp(t). The formula in equation (13) shows that R(t) = ln (‖X(t)‖) is the solution of

R(t) − R(0) =
d∑

i,j=1

aij

∫ t

0
Si(u)Sj (u) du

+
1

2

∑
0<u�t

ln

(
1 + 2

d ′∑
r=1

Ar(u−)�Cr(u) +
d ′∑

r=1

Brr(u−)(�Cr(u))2

)
, (14)

so that

R(t) − R(0)

t
=

d∑
i,j=1

aij

1

t

∫ t

0
Si(u)Sj (u) du

+
1

2t

∑
0<u�t

ln

(
1 + 2

d ′∑
r=1

Ar(u−)�Cr(u) +
d ′∑

r=1

Brr(u−)(�Cr(u))2

)
. (15)

Suppose that (1) the integrals (1/t)
∫ t

0 Si(u)Sj (u) du in equation (15) converge a.s. to
some constants αij as t → ∞ and (2) the second summation on the right-hand side of
equation (15) converges to a constant β as t → ∞. Then

lim
t→∞

R(t) − R(0)

t
=

d∑
i,j=1

aij αij + β = λL a.s., (16)

so that

‖X(t)‖∼‖X(0)‖ exp


t


 d∑

i,j=1

aij αij + β





 = ‖X(0)‖ eλLt a.s., t → ∞,

(17)

implying that X is asymptotically stable and unstable a.s. if λL < 0 and λL > 0, respectively.
The above approach was applied successfully in [6] to assess the stability of stationary

solutions of stochastic differential equations with Gaussian white noise. In was shown that, if
X is R

d -valued diffusion processes, (1) the ratio ln ‖X(t)‖/t converges a.s as time increases
indefinitely and (2) this limit may take two or more values for d > 1, which depend on the
initial state X(0). Moreover, a method was developed in [6] for calculating the largest value
of limt→∞ ln ‖X(t)‖/t , needed to determine the long term behaviour of X and referred to as
the top Lyapunov exponent.

It was not possible to extend the method in [6] to the case of general stochastic differential
equations with Poisson white noise. Our attempt of extending the methodology in [6] to
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equations driven by Poisson white noise was unsuccessful. It was not possible to develop
general criteria for validating the assumptions leading to equations (16) and (17). That these
assumptions hold in some cases is demonstrated by examples later in the paper.

5.2. Stochastic stability for Markov chains

According to the geometric ergodic theorem in the previous section (equations (8) to (10)), it
is sufficient to find a solution v of equation (8) for a small set C to assure that the Markov chain
in equation (6) is ergodic. In this case, P (m)(ξ, ·) in equation (9) can be used to approximate
the invariant probability measure π of Xn provided that m is sufficiently large, irrespective
of the starting point X0 = ξ ∈ Sv . This approximation of π can be used to examine the long
term behaviour of the Markov chain Xn. Long term properties of Xn can also be inferred by
examining samples of Xn generated by Monte Carlo simulation from the recurrence formula
in equation (6).

6. Applications

Two processes defined by equation (2) with d = 1 and d = 2 are considered. Lyapunov
exponents can be obtained by relatively simple calculations for the real-valued process (d = 1),
but are difficult to find for R

d -valued process with d � 2. The theory of stochastic stability
for Markov chains proved adequate for (1) establishing ergodicity conditions for R

d -valued
processes defined by equation (2) and (2) assessing the long term behaviour of these processes.

6.1. An R-valued process

Let X(t), t � 0, be a real-valued process defined by the stochastic differential equation

dX(t) = −αX(t−) dt + X(t−) dC(t), t � 0, (18)

where α is a constant, C(t) = ∑N(t)
k=1 Yk is a compound Poisson process, Yk, k = 1, 2, . . . , are

independent identically distributed real-valued random variables, independent of a Poisson
process N with intensity λ > 0 (equation (3)). The process X in equation (18) is referred to as
the geometric compound Poisson process ([3], example 8.56).

6.1.1. Lyapunov exponent. Calculations as in the previous section using Itô’s formula show
that R(t) = ln(|X(t)|) satisfies the stochastic differential equation

dR(t) = −αdt +
∫

R

ln(1 + y)M(dt, dy), (19)

where the Poisson random measure M(dt, dy) gives the number of jumps of C whose
time and magnitude are in the rectangle (t, t + dt] × (y, y + dy] and has expectation
E[M(dt, dy)] = λdt dFy(y) depending on the distribution function Fy of Y1 ([3], section 8.7).
The above equation is meaningful for 1+Y1 > 0 a.s., and we assume that this inequality holds.
We have (equation (17))

|X(t)| ∼ |X(0)| exp(−αt + C∗(t)), (20)

where C∗(t) = ∑N(t)
k=1 ln(1 + Yk). If E[ln(1 + Y1)] exists and is finite, then (equation (16))

λL = −α + lim
t→∞

C∗(t)
t

= α + λE[ln(1 + Y1)] a.s., (21)

where the final expression of λL results from the strong law of large numbers. Since for real-
valued processes there is a single Lyapunov exponent, we conclude that under the condition
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Figure 1. Samples of X in equation (18) for α = −1, jumps in (−1/2, 1/2), and two values of λ.

1+Y1 > 0 a.s. the trivial solution of equation (18) is stable a.s. if λL = −α + λE[ln(1 + Y1)] <

0, that is, the solution of this equation converges a.s. to 0 as t → ∞.
Figure 1 shows two samples of X in equation (18) with α = 1, jumps Yk uniformly

distributed in (−1/2, 1/2), intensities λ = 5 (left panel) and λ = 30 (right panel), and initial
state X(0) = 1. The Lyapunov exponents are λL = 0.7725 and λL = −0.3650 for λ = 5
and λ = 30, respectively, since E[ln(1 + Y1)] 	 −0.0455. The long term behaviour of the
samples of X illustrated in figure 1 is consistent with our prediction based on the Lyapunov
exponent λL.

6.1.2. Stochastic stability for Markov chains. Let T0 = 0 and denote by 0 � T1 < T2 < · · ·
the jump times of the Poisson process N. The Markov chain Xn, n = 0, 1, . . . , in equation (6)
is defined by the recurrence formula

Xn = (1 + Yn)Xn−1 e−αZn, n = 1, 2, . . . , (22)

where X0 denotes the initial state and Zn = Tn − Tn−1, n = 1, 2, . . . , are independent
exponential random variables with mean 1/λ.

The recurrence formula in equation (22) gives

|Xn| | (X0 = ξ) = |ξ |
n∏

k=1

|1 + Yk| e−α
∑n

k=1 Zk = |ξ | exp

(
n∑

k=1

[ln |1 + Yk| − αZk]

)
. (23)

Let Rn = ∑n
k=1[ln |1 + Yk| − αZk], n = 1, 2, . . . , be a random walk starting at R0 = 0. If the

expectation

E[ln |1 + Y1| − αZ1] = E[ln |1 + Y1|] − α/λ = λL/λ

is positive, negative and 0, then Rn → +∞ a.s. as n → ∞, Rn → −∞ a.s. as n → ∞, and
limn→∞ Rn does not exist, respectively ([3], section 2.14). Therefore, if ξ �= 0, |Xn| → ∞ a.s.
as n → 0 and Xn → 0 a.s. as n → ∞ for E[ln |1+Y1|]−α/λ > 0 and E[ln |1 + Y1|]−α/λ < 0,
respectively, in agreement with the long term behaviour of the process X in equation (18)
predicted by the Lyapunov exponent in equation (21).

The following three examples show that one can use the ergodic theorem discussed earlier
in the paper to demonstrate stability of the Markov chain in equation (22) under appropriate
conditions.
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Example 1. Suppose that α > 0, E[Y1] = 0 and 1 + Y1 > 0 a.s., so that Xn in equation (22)
takes values in [0,∞) and (−∞, 0] for X0 > 0 and X0 < 0, respectively. Hence, we can
assume X0 = ξ > 0 without loss of generality.

To apply the ergodic theorem we need to select a function v, for example, v(ξ) = ξ + 1,
and a small set C for which the condition in equation (8) is satisfied. Simple considerations
show that C = [0, 1] is not a small set for Xn since it includes {0}. If {0} is eliminated from
C, for example, we replace C with C∗ = [ε, 1], 0 < ε < 1, then the condition in equation (8)
gives �v(ξ) + βv(ξ) = β � 0 for ξ = 0 /∈ C∗, so that there is no β > 0 satisfying this
equation. We apply the ergodic theorem to a modified version of Xn.

Let X̃n, n = 0, 1, . . . , with initial state X̃0 = ξ be defined by the recurrence formula

X̃n = (1 + Yn)X̃n−1 e−αZn + Bn, n = 1, 2, . . . , (24)

where Bn are independent copies of an exponential random variables with expectation
1/µ,µ > 0, which are independent of the random variables {Yn} and {Zn}. Under the
assumptions 1 + Y1 > 0 a.s. and X̃0 = ξ > 0, we have 0 � Xn � X̃n at all times, so that if
X̃n is stable, so is Xn. We now show that the condition in equation (8) with v(ξ) = ξ + 1 and
C = [0, 1] holds for X̃n, and that C is a small set for X̃n. We then conclude that X̃n is an
ergodic Markov chain whose invariant measure π can be approximated by its m-step transition
probability P (m) for a sufficiently large m (equations (9) and (10)). The stability conclusion
extends to the original Markov chain Xn by the above considerations.

Let v(ξ) = ξ + 1, X̃0 = ξ � 0 and C = [0, 1]. Assuming α + λ > 0, we have

�v(ξ) = E[v(X̃1) | X̃0 = ξ ] − v(ξ) = − ξα

λ + α
+

1

µ
. (25)

The condition, �v(ξ) + βv(ξ) � 0, ξ � 1, in equation (8) requires

β � ξ

ξ + 1

α

λ + α
− 1

ξ + 1

1

µ
,

for ξ /∈ C, so that we can take

β = 1

2

(
α

λ + α
− 1

µ

)
(26)

under the condition µ > 1 + λ/α implying β > 0. The condition in equation (8) also requires
�v(ξ) + βv(ξ) − b � 0 for ξ ∈ C, β in equation (26), and some b < ∞. This requirement
can be satisfied for

b = 1

2

(
α

λ + α
+

1

µ

)
. (27)

It remains to show that C = [0, 1] is a small set for X̃n. We have X̃1 | (X̃0 = ξ) = A1 +B1

with the notation A1 = (1 + Y1)ξ e−αZ1 . Since the random variables A1 and B1 are positive
and independent of each other, we have P(X̃1 � x | X̃0 = ξ) = ∫ x

0 FB1(x − u)fA1(u) du, so
that

p(ξ, x) = d

dx
P (X̃1 � x | X̃0 = ξ) =

∫ x

0
fB1(x − u)fA1(u) du � µ e−µxFA1(x),

where fU and FU denote the density and the distribution of a random variable U, respectively.
Since

FA1(x) = P(Y1 � x eαZ1/ξ − 1) �
∫ ∞

0
FY1(x eαz − 1)fZ1(z) dz,
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we have

p(ξ, x) � µ e−µx

∫ ∞

0
FY1(x eαZ1 − 1)fZ1(z) dz > 0, ξ ∈ C = [0, 1],

so that C is a small set for X̃n.
We note that the state X in equation (18) with α = −1, Y1 ∼ U(−1/2, 1/2) and λ = 30 is

stable since the Lyapunov λL in equation (21) is negative. A sample of X with these parameters
is shown in the right panel of figure 1. The value of β in equation (26) corresponding to these
parameters is negative. However, we cannot conclude that the Markov chain X̃n is not stable
since the ergodic theorem provides only sufficient conditions for stability. Other selection of
the pair (v, C) may and do show that the chain is stable.

Example 2. Now 1 + Y1 can take positive and negative values, so that the support of Xn is
the entire real line. We will no longer assume that α > 0 but, instead, only that α + λ > 0.
Furthermore, we no longer assume that EY1 = 0. Instead we assume that E|1+Y1| < 1+α/λ.
As mentioned in the previous example, it is not possible to apply the condition in equation
(8) to the Markov chain Xn. We apply this condition to a Markov chain X̃n, n = 0, 1, . . . ,

defined by

X̃n = (1 + Yn)X̃n−1 e−αZn + Bn, n = 1, 2, . . . , (28)

where X̃0 = X0 and Bn are independent copies of a Gaussian variable with mean 0 and
variance σ 2

B , that are independent of the random variables {Yn} and {Zn}. We show that, if
σ 2

B is small enough, X̃n is stable and that the difference between X̃n and Xn is stable as well.
Hence, Xn is stable.

We first apply the condition of equation (8) with v(ξ) = |ξ | + 1 and C = [−1, 1] to the
Markov chain X̃n. We have

�v(ξ) = E[|X̃1| + 1 | X̃0 = ξ ] − (|ξ | + 1) = E[|(1 + Y1)ξ e−αZ1 + B1|] − |ξ |
� E[|1 + Y1||ξ | e−αZ1 + |B1|] − |ξ | = |ξ |

(
λE[|1 + Y1|]

λ + α
− 1

)
+ E[|B1|]. (29)

To satisfy the condition in equation (8) with C = [−1, 1] and ξ /∈ C we choose β > 0 such
that

�v(ξ) + βv(ξ) � |ξ |
(

λE[|1 + Y1|]
λ + α

− 1

)
+ E[|B1|] + β(|ξ | + 1) � 0

or

β � |ξ |
|ξ | + 1

(
1 − λE[|1 + Y1|]

λ + α

)
− E[|B1|]

|ξ | + 1

for all ξ /∈ C. Therefore, we take

β = 1

2

[(
1 − λE[|1 + Y1|]

λ + α

)
− E[|B1|]

]
. (30)

The expression of β in equation (30) is strictly positive if 1 − E[|1 + Y1|]/(1 + α/λ) −√
2/πσB > 0. This condition is satisfied if, for example, α = 2, λ = 1, Y1 is uniformly

distributed in (−1, 1) and σB = 0.5, in which case β = 0.2667.
To satisfy the condition in equation (8) for ξ ∈ C we choose b such that

�v(ξ) + βv(ξ) − b � |ξ |
(
λE[|1 + Y1|]

λ + α
− 1

)
+ E[|B1|] + β(|ξ | + 1) − b � 0
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Figure 2. Samples of �n for α = 20, λ = 10, σB = 0.5, Y1 ∼ U(−5, 2) (left panel) and
Y1 ∼ U(−3, 1) (right panel).

or

b � 1 − |ξ |
2

[(
1 − λE[|1 + Y1|]

λ + α

)
+ E[|B1|]

]
,

for all ξ ∈ C = [−1, 1], so that we can take

b = 1

2

[(
1 − λE[|1 + Y1|]

λ + α

)
+ E[|B1|]

]
. (31)

Now we show that C = [−1, 1] is a small set for X̃n. Observe that the transition density
is given here by

p(ξ, x) = 1

σB

√
2π

E

[
exp

(
− (x − (1 + Y1)ξ e−αZ1)2

2σ 2
B

)]
.

Choose ρ > 0 such that q = P(|1 + Y1| � ρ) > 0. Then for x > 2ρ max(1, e−α) we have

p(ξ, x) � 1

σB

√
2π

q(1 − e−λ) e−x2/8σ 2
B ,

a uniform in ξ lower bound that shows that C is a small set for X̃n.
Therefore, X̃n is stable. Observe now that the difference �n = X̃n − Xn satisfies the

recurrence equation

�n = (1 + Yn)�n−1 e−αZn + Bn, n = 1, 2, . . . , (32)

which is exactly the same equation as equation (28), but with a different initial state �0 = 0.
Therefore, the above argument shows also that the difference between X̃n and Xn is stable,
and so Xn is stable as well.

Figure 2 shows two samples of �n in equation (32) for α = 20, λ = 10, σB = 0.5, Y1 ∼
U(−5, 2) (left panel) and Y1 ∼ U(−3, 1) (right panel). The notable differences between these
two samples are caused by the size of the jumps Y1 in the definition of the driving noise.

Example 3. Here we show how the ergodic theorem for Markov chains works in the most
general case, that of

E[ln |1 + Y1|] < α/λ. (33)
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We will assume that E|1 + Y1|θ < ∞ for some θ > 0. Even though the function v used in the
previous example may not always work here, we will see that the function v(ξ) = |ξ |p + 1 will
work for some p > 0. We will, once again, apply the Markov chain theory to the modified
Markov chain X̃n, n = 0, 1, . . . given in equation (28). We still use C = [−1, 1], which, as
we know from the previous example, is a small set for X̃n.

Note that for p ∈ (0, 1] we have

�v(ξ) = E[|X̃1|p + 1 | X̃0 = ξ ] − (|ξ |p + 1) = E[|(1 + Y1)ξ e−αZ1 + B1|p] − |ξ |p
� |ξ |p[E(|1 + Y1| e−αZ1)p − 1] + E[|B1|p]. (34)

Since (Up − 1)/p � (Uθ − 1)/θ, p ∈ (0, θ ], for U � 1, and (1 − Up)/p � − log U for
0 < U < 1, we have

E

[
Up − 1

p

]
→ E[log U ]

as p ↓ 0 by dominated convergence. Therefore, under the assumption in equation (33) there
is p ∈ (0, 1] such that

E[|1 + Y1| e−αZ1 ]p − 1 := −c < 0.

Fixing that p, we have for all ξ /∈ C

�v(ξ) + βv(ξ) � −c|ξ |p + E[|B1|p] + β(|ξ |p + 1) < 0

if we choose β < c/2 and the variance σ 2
B of B1 small enough. Similarly, it is easy to choose

b that will satisfy the condition in equation (8) with ξ ∈ C. Therefore, the Markov chain X̃n

is stable. Since the difference �n = X̃n − Xn satisfies the same recurrence equation as X̃n

does, �n is stable as well and, hence, so is Xn = X̃n + �n.
We have established conditions under which the state X of the dynamic system in

equation (18) is stable based on methods using Lyapunov exponents and an ergodic
theorem for Markov chains. It was found using Lyapunov exponents that X is stable if
−α + λE[ln |1 + Y1|] < 0. The conditions for the stability of the associated Markov chain
Xn in equation (22) depend on the selection of the function v and of the small set C used in
equation (8). An inadequate choice of (v, C) may result in very restrictive stability conditions
for Xn.

6.2. An R
2-valued process

Let X(t), t � 0, be defined by{
dX1(t) = a1X1(t−) dt + X1(t−) dC1(t) + X2(t−) dC2(t)

dX2(t) = a2X2(t−) dt + X2(t−) dC1(t) − X1(t−) dC2(t),
(35)

where a1, a2 are some constants, Cr, r = 1, 2, are two-independent compound Poisson
processes defined by equation (3), Nr denote two mutually independent Poisson processes
with intensity λr and Yr,q, q = 1, 2, . . . , are independent identically distributed random
variables for r = 1, 2, which do not depend on the processes Nr . An alternative form of the
defining equation for X = (X1, X2) is

d

[
X1(t)

X2(t)

]
=

[
a1X1(t−)

a2X2(t−)

]
dt +

[
X1(t−) X2(t−)

X2(t−) −X1(t−)

]
dC(t), (36)

where C(t) = ∑N(t)
k=1 V k, N denotes a Poisson process with intensity λ = λ1 + λ2 and V k are

R
2-valued-independent random variables equal in distribution to (Y1,1, 0) and (0, Y2,1) with

the probabilities λ1/λ and λ2/λ, respectively (equation (4)).
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Figure 3. Samples of C and X for X1(0) = X2(0) = 10, a1 = a2 = −1, λ1 = 1 and λ2 = 2.

6.2.1. Lyapunov exponent. The Itô formula for semimartingales applied to ln(‖X(t)‖2)

gives

ln(‖X(t)‖2) − ln(‖X(0)‖2) = 2a1

∫ t

0

X1(u)2

‖X(u)‖2
du + 2a2

∫ t

0

X2(u)2

‖X(u)‖2
du + C̄(t) (37)

following simple but lengthy calculations, where C̄(t) = ∑N(t)
k=1 Ȳk and Ȳk are independent

copies of a random variable Ȳ1 equal to ln
(
1 + Y 2

1,1

)
and ln

(
1 + Y 2

2,1

)
with probabilities λ1/λ

and λ2/λ, respectively. The above equation implies that R(t) = ln(‖X(t)‖) is given by

R(t) − R(0) =
∫ t

0
(a1S1(u)2 + a2S2(u)2) du +

1

2
C̄(t), (38)

so that
R(t) − R(0)

t
= 1

t

∫ t

0
(a1S1(u)2 + a2S2(u)2) du +

1

2t
C̄(t), (39)

where S(t) = X(t)/ ‖X(t)‖.
If Ȳ1 is integrable, then limt→∞(1/(2t))C̄(t) = (λ/2)E[Ȳ1] almost surely. If X in

equation (36) is ergodic, then the integral on the right-hand side of the above equation converges
a.s. to a constant ᾱ as t → ∞ since it has the form (1/t)

∫ t

0 f (X(u)) du, where f : R
2 → R

is a bounded Borel measurable function. Under these conditions we have

lim
t→∞

R(t) − R(0)

t
= ᾱ +

λ

2
E[Ȳ1] = λLa.s., (40)

so that ‖X(t)‖∼‖X(0)‖ exp[(ᾱ + (λ/2)E[Ȳ1])t] a.s. for large times t implying that the trivial
stationary solution is stable a.s. if ᾱ + (λ/2)E[Ȳ1] < 0.

Figures 3 and 4 show samples of the driving noise C with λ1 = 1, λ2 = 2, and jumps Y1,r

uniformly distributed in (−√
3/λr,

√
3/λr), r = 1, 2, and the corresponding samples of X for

X(0) = (10, 10) and system coefficients a1 = a2 = −1 and a1 = −a2 = 1. The estimates of
the Lyapunov exponents for these samples of X , are λL = −0.4103 for a1 = a2 = −1 and
λL = 0.9763 for a1 = −a2 = −1, are consistent with the evolution in time of the samples of
X . The norm ‖X(t)‖ of the state X(t) approaches 0 as t increases for a1 = a2 = −1 and
increases in time for a1 = −a2 = 1. However, we cannot conclude that the trivial solution
equation (35) with coefficients a1 = a2 = −1 and the above input noise is stable a.s. since
Lyapunov coefficients larger than λL = −0.4103 may be found for other initial states X(0).
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Figure 4. Samples of C and X for X1(0) = X2(0) = 10, a1 = −a2 = 1, λ1 = 1 and λ2 = 2.

6.2.2. Stochastic stability for Markov chains. Let T0 = 0 and 0 � T1 < T2 < · · · denote the
jump times of N and let Xi,n = Xi(Tn), i = 1, 2. The sequence Zn = Tn −Tn−1, n = 1, 2, . . . ,
of times between consecutive jumps of N is independent and exponentially distributed with
mean 1/λ. Since Xi(Tn−) = Xi,n−1 exp(aiZn), i = 1, 2, we have the recurrence formula[

X1,n

X2,n

]
=

[
X1,n−1 ea1Zn

X2,n−1 ea2Zn

]
+

[
X1,n−1 ea1Zn X2,n−1 ea2Zn

X2,n−1 ea2Zn −X1,n−1 ea1Zn

]
V n (41)

for the Markov chain Xn = (X1,n, X2,n). This formula gives

Xn =
[

1 + V1,n V2,n

−V2,n 1 + V1,n

] [
ea1Zn 0

0 ea2Zn

]
Xn−1 = WnZnXn−1 = UnXn−1, (42)

where Wn and Zn denote the above (2, 2) matrices depending on the random variables V n

and Zn, respectively, and U n = WnZn.
As in the previous three examples it is not possible to apply directly the condition in

equation (8) to the Markov chain Xn to assess its stability. We consider a modified Markov
chain X̃n, n = 0, 1, . . . , defined by

X̃n = WnZnX̃n−1 + Bn = UnX̃n−1 + Bn, n = 1, 2, . . . , (43)

with initial state X̃0 = ξ, where Bn are independent copies of an R
2-valued random variable

B with E[B] = 0 that are independent of the random variables {Vn} and {Zn}. As above, if
we show that X̃n satisfies the conditions of the ergodic theorem discussed earlier in the paper,
then so does ∆n = X̃n − Xn, and then the Markov chain Xn is stable.

We now apply the condition in equation (8) with v(ξ) = |ξ1|p + |ξ2|p + 1 for some
0 < p � 1 and C = [−1, 1] × [−1, 1] to the Markov chain X̃n. We have

�v(ξ) = E[|X̃1,1|p + |X̃1,2|p + 1 | X̃0 = ξ] − (|ξ1|p + |ξ2|p + 1)

� E[|U1,11|p]|ξ1|p + E[|U1,12|p]|ξ2|p + E[|U1,21|p]|ξ1|p
+ E[|U1,22|p]|ξ2|p + E[|B1,1|p] + E[|B1,2|p] − |ξ1|p − |ξ2|p

� (|ξ1|p + |ξ2|p)

{
λ

max(0, λ − pa)
E[|1 + V1,1|p + |V1,2|p] − 1

}
+ E[|B1,1|p] + E[|B1,2|p], (44)
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where U1,ij , i, j = 1, 2, denote the entries of U1 and a = max(a1, a2). The above inequality
follows from the expression of the coordinates of X̃1 | (X̃0 = ξ) = U 1ξ + B1, for example,
the first coordinate of this vector is U1,11ξ1 + U1,12ξ2 + B1,1.

Suppose that there is 0 < p � 1 such that

λ

max(0, λ − pa)
E[|1 + V1,1|p + |V1,2|p] − 1 = −c < 0. (45)

Then the condition in equation (8) with the above function v and ξ /∈ C = [−1, 1] × [−1, 1]
will be valid for any 0 < β < c as long as we select, say, the entries of B1 to be independent
Gaussian variables with mean 0 and sufficiently small variance σ 2

B . Furthermore, as above we
see that taking, say,

b = 4β (46)

will fulfil the requirement �v(ξ) + βv(ξ) − b � 0 for ξ ∈ C.
One situation where the condition in equation (45) is satisfied is that where

E[ln |1 + V1,1|] +
max(a1, a2)

λ
< 0 (47)

and the ‘disturbance’ provided by V1,2 is small enough, for example, V1,2 is normal with a
small variance, as we can see using the same argument as in example 3 above.

It remains to show that C = [−1, 1] × [−1, 1] is a small set for X̃n. The recurrence
formula in equation (43) and the assumption that the entries of B1 are independent Gaussian
variables with mean 0 and variance σ 2

B give the following expression for the transition density:

p((ξ1, ξ2), (x1, x2)) = 1

2πσ 2
B

E

[
exp

(
− 1

2σ 2
B

((x1 − (1 + V1,1)ξ1ea1Z − V1,2ξ2 ea2Z)2

+ (x2 − (1 + V1,1)ξ2 ea2Z − V1,2ξ1 ea1Z)2)

)]
.

Choose ρ > 0 such that q = min(P (|1 + V1,1| � ρ), P (|V1,2| � ρ) > 0. Then for
xi > 3ρ max(1, ea1 , ea2), i = 1, 2, we have

p((ξ1, ξ2), (x1, x2)) � 1

2πσ 2
B

e−(x2
1 +x2

2 )/18σ 2
B ,

a uniform in (ξ1, ξ2) lower bound that shows that C is a small set for X̃n.

7. Conclusions

Two methods have been considered for assessing the stability of the trivial solution of linear
stochastic differential equations driven by Poisson white noise, interpreted as the formal
derivative of a compound Poisson process. The first method attempts to extend the method
in [6] developed for diffusion processes defined by linear stochastic differential equations,
and is based on Itô’s formula for semimartingales and Lyapunov exponents. The method
is adequate for real-valued processes, but encounters difficulties when applied to R

d -valued
processes for d > 1, since there may be two or more Lyapunov exponents for these processes,
the top Lyapunov exponent is needed for stability analysis, and it was not possible to develop
an algorithm for calculating this Lyapunov exponent.

The second method uses a geometric ergodic theorem for Markov chains to assess the long
term behaviour of a Markov chain Xn, n = 0, 1, . . . , associated with the solution X(t), t � 0,
of a linear stochastic differential equation driven by Poisson white noise. It was shown that if
Xn is ergodic so is X(t). Conditions have been established to assess whether Xn is an ergodic
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Markov chain and characterize the long term behaviour of Xn. Two numerical examples have
been presented to illustrate the application of the two methods. The examples demonstrate
limitations of the first method and show that the second method using the associated Markov
chain Xn is general.
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[4] Haken H 1983 Advanced Synergetics. Instability Hierarchies of Self-Organizing Systems and Devices

(New York: Springer)
[5] Horsthemke W and Lefever R 1984 Noise-Induced Transitions (New York: Springer)
[6] Khas’minskii R Z 1967 Necessary and sufficient conditions for the asymptotic stability of linear systems Theory

Probab. Appl. 12 144–7
[7] Meyn S P and Tweedie R L 1993 Markov Chains and Stochastic Stability (New York: Springer)
[8] Protter P 1990 Stochastic Integration and Differential Equations (New York: Springer)


